
 Revision: 1.0

 1

Revision Description Date

1.0 Release 2011/08/21

1.1 2011/09/11

FLEETPC-6

User Manual

 Revision: 1.0

 2

Copyright 2011

All Rights Reserved.

Manual’s first edition:

For the purpose of improving reliability, design and function, the information in this

document is subject to change without prior notice and does not represent a commitment

on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or

consequential damages arising out of the use or inability to use the product or

documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All rights are

reserved. No part of this Manual may be reproduced by any mechanical, electronic, or

other means in any form without prior written permission of the manufacturer.

Trademarks

IBM PC is a registered trademark of the International Business Machines Corporation;

Pentium is a registered trademark of Intel Technologies Inc; Award is a registered

trademark of Award Software International Inc; other product names mentioned herein are

used for identification purposes only and may be trademarks and/or registered trademarks

of their respective companies.

 Revision: 1.0

 3

Table of Contents

System Installation Guide...5

1.Introduction to FLEETPC-6 ...6

1.1 Specifications... 6
1.2 Packing List Fehler! Textmarke nicht definiert.
1.3 System Dissection ... 8

2.Procedures of Assembly/Disassembly....................................13

2.1 DDR3 Memory Installation... 13
2.2 HDD Installation... 15
2.3 SIM Card Installation ... 18
2.4 CF Card Installation... 20
2.5 RF Antenna Installation.. 22

Board Guide..23

1.Introduction..24

1.1 Specifications... 24

2.H/W Information...25

2.1 Locations of Connector and Jumper Setting..................................... 25
2.2 Connector and Jumper Setting Table.. 28

 2.3 Power Subsystem………………………………………………………. 33

 2.4 Remote Switch…………………………………………………………...35
 2.5 Status LED…………………………………………………………………35
 2.6 Fuse selection……………………………………………………………..36
 2.7 COM1 / 2 to choose RS-232 / RS-485 / RS-422 by Jump setting……36
 2.8 GPIO……………………………………………………………………….37

3.BIOS setting ..38

3.1 Main Setup.. 39
3.2 Advanced Chipset Setup... 41
3.3 Power Setup ... 43
3.4 PnP/PCI Setup.. 44

 Revision: 1.0

 4

3.5 Peripherals Setup ... 46
3.6 PC Health Setup ... 47
3.7 Boot Setup .. 48
3.8 Exit Setup ... 49

4.SOFTWARE INSTALLATION and PROGRAMMING GUIDE...51

4.1 Introduction ... 51
4.2 File Descriptions ... 57
4.3 API List and Descriptions.. 60
4.4 Appendix ... 71

5.Optional Module specifications..72

5.1 GPS .. 72
5.2 Bluetooth... 72
5.3 WiFi... 73
5.4 Sierra 3.5G ... 73
5.5 Huawei 3.5G ... 73

 Revision: 1.0

 5

FLEETPC-6 System

System Installation Guide

 Revision: 1.0

 6

1 Introduction to FLEETPC-6

FLEETPC-6 series with Intel Atom D425/D525 processor is a multi-function

In-Vehicle computer which is suitable for using in all kind of applications. Besides basic I/O

ports like VGA, USB, COM, LAN, and GPIO, FLEETPC-6 has complete wireless solutions

for selection, embedded CAN BUS function to allow microcontrollers and devices to

communicate with each other in vehicle. In addition, FLEETPC-6 has intelligent power

management function with software utility to monitor power status and control power

sequence, and also compliant with most industry standards for in-vehicle usage including

CE, FCC, and E-Mark 13.

1.1 Specifications

Features

• Fanless

• Intel Atom D425/D525

• GPS/3.5G/WiFi/Bluetooth module option

• With API to customize power delay timing

Specifications

• CPU: Intel Atom D425

 Intel Atom D525

 Chipset: Intel ICH8M

• Memory: 1 x DDR3 SO-DIMM, Max. 4G, 1G Bytes pre-installed

• Graphic controller: Integrated within Atom D425/D525

External I/O

• 1 x Anti-shock 2.5" HDD

• 1 x GbE RJ45 with LED, Realtek 8111D

• 2 x RS-232, 2 x RS-232/422/485

• 1 x MIC-In (Green), 1 x SPK-Out (Blue)

• 4 x USB

• 8 bits GPIO, 4 in/ 4 out

• 1 x Remote switch

• 1 x SMA for GPS, 1 x SMA for 3.5G, 2 x SMA for WiFi, 1 x SMA for Bluetooth

• 1 x SIM slot

• 1 x CF slot

• CAN BUS Support CAN 2.0A/2.0B protocol (Include API)

 Revision: 1.0

 7

• One 12V/24V input connector

Power management

• Comply standard 12V/24V car battery

• Smart ATX power function:

 (1). Power on/off retry

 (2). Adjustable delay time for system OFF by Switch on power module

 (3). System on/off by Vehicle ignition or Remote switch button

 (4). Low Power input monitoring, Auto shutdown

 (5). API for customize delay timing by software

Software

• OS support: Windows XP/XP embedded/Windows 7/ Linux fedora 12

Mechanical

• Dimension: (L) 280 x (W) 181.5 x (H) 76.8 (mm)

Environment Specification

• Vibration: IEC 60068-2-64 5~500Hz, 3GRMS for SSD/CF, 1GRMS for 2.5”HDD.

• Shock: IEC 60068-2-27 50G-500m/s -11ms, operating

• Operating Temp. : -20~50℃ with Industrial Grade CF or SSD

• Storage Temp. : -40~80℃

• Certification : CE/FCC class B/E-Mark 13

 Revision: 1.0

 8

1.2 System Dissection

(1) Dimensions

(2) Front Panel

LEDs

VGA

LAN USB*4 COM Ports

CF Card

FUSE Remote Switch

Audio

GPIO

Power Input CAMBUS

 Revision: 1.0

 9

(3) Back Panel

WIFI 3.5G GPS Bluetooth WIFI

SIM Card

 Revision: 1.0

 10

(4) System Configuration

 Revision: 1.0

 11

 Revision: 1.0

 12

Item Description Quantity

1 TOP COVER 1

2 Mainboard 1

3 BOTTOM BASE 1

4 Wall Mount Bracket 2

5 CF BRACKET 1

6 IO PANEL 1

7 FUSE 1

8 BOTTOM COVER 1

9 WIFI MODULE 1

10 3.5G MODULE 1

11 HDD BRACKET 1

12 BLUETOOTH module 1

13 GPS MODULE 1

14 3.5G ANTENNA 1

15 WIFI ANTENNA 2

16 BLUETOOTH Antenna 1

17 GPS ANTENNA 1

 Revision: 1.0

 13

2 Procedures of Assembly/Disassembly

2.1 DDR3 Memory Installation
The following instructions will guide you to install DDR3 memory step-by-step.

1. Unfasten seven screws of chassis bottom cover.

2. Install the DDR3 memory module into the DDR3 socket.

 Align the memory module's cutout with the DDR3 slot notch.

 Revision: 1.0

 14

 Slide the memory module into the DDR3 slot.

3. Assemble bottom cover with seven screws.

 Revision: 1.0

 15

2.2 HDD Installation

1. Open the bottom cover (the same as above steps).

2. Unfasten 4 screws to release HDD bracket.

3. Tack out 4 HDD screws from packing bag.

 Revision: 1.0

 16

4. Assemble HDD with HDD bracket by 4 HDD screws.

5. Install HDD module back to system by fastening 4 screws.

 Revision: 1.0

 17

6. Plug SATA cable and SATA Power cable into Mainboard.

7. Connect SATA cable and SATA Power cable with HDD.

8. Close the bottom cover (the same as above steps).

 Revision: 1.0

 18

2.3 SIM Card Installation

1. Unfasten 3 screws to release SIM Card bracket.

2. Push SIM Card into SIM card slot.

 Revision: 1.0

 19

3. Fixed SIM Card bracket by 3 screws.

 Revision: 1.0

 20

2.4 CF Card Installation

1. Unfasten two screws of CF bracket and then take out the CF card bracket.

2. Put the CF card into CF bracket.

Please note that the direction of CF card and CF bracket

 Revision: 1.0

 21

3. Push CF card to the bottom of bracket to stop the forwarding at the bend of

bracket.

4. Push them into the CF slot of system machine and then fasten the two original

screws to fix CF bracket.

Scre

 Revision: 1.0

 22

2.5 RF Antenna Installation

1. Please find out all RF devices from below photo.

2. Take out antenna cables from packing bag and install them following below

photo.

3.5G
GPS

 Revision: 1.0

 23

FLEETPC-6 Board
Fan-less with Intel ATOM Pineview + ICH8M

Board Guide

	

Manual Rev.: 1.0
Book Number: FLEETPC-6-2011.02.18

 Revision: 1.0

 24

1 INTRODUCTION

1.1 Specifications

 Intel Atom D525/D425 1.66GHz

 1 x SO-DIMM supports DDRIII up to 4GB(Memory DDR3 data transfer rates of 800

MT/s)

 1 x VGA

 6 x USB2.0

 2 x SATA

 1 x CF II

 5 x RS-232

 1 x GbE (Realtek RTL8111D)

 1 x Line-out , 1 x MIC

 1 x Canbus (Implementation ISO 11898)

 8-bit GPIO with 4in / 4out

 Optional WiFi/ Bluetooth/ GPS/ 3.5G solution for selection

 Intelligent power management support standard 12V/24V car battery

 Revision: 1.0

 25

2 H/W INFORMATION

This chapter describes the installation of FLEETPC-6. At first, it shows the Function

diagram and the layout of FLEETPC-6. It then describes the unpacking information which

you should read carefully, as well as the jumper/switch settings for the FLEETPC-6

configuration

2.1 Locations of Connector and Jumper Setting

2.1.1 Locations (Top side)

 Revision: 1.0

 26

 CN6: Bluetooth connector CN18: CANBUS connector

CN23: RI SELECT for
COM1/2
CN24: RI SELECT for
COM3/4

 CN8: GPS connector GPIO1: GPIO connector
JP8,JP11: RS-232 / RS-422
/ RS-485 Selection for
COM1/2

 SATA power connector1
CN5: RJ45 + USB X 2
connector

CN25 (Reserve): RI
SELECT for COM5/6

 SATA power connector 2 CN7: USB connector
COM5 (Reserve): RS232
signal connector

 CN2: CMOS clear
CN28: PIC Programming
connector.

JP5,JP6 (Reserve):
RS-485 Termination 120
ohm

 CN13: SIM card slot
CN20: Setting
Voltage level of Battery

JP7,JP10: RS-232 / RS-422
/ RS-485 Selection for
COM1/2

 BH1: CMOS battery VGA1:VGA connector
JP9,JP12: RS-232 / RS-422
/ RS-485 Selection for
COM1/2

 Mini PCIe slot 1
SW1: DIP switch for
power mode select

U8: SPI BIOS Socket

 CN9 Internal USB
COM1&COM2:
RS-232/422/485

CN21: BIOS
Programmable HEADER

 CN10 Internal USB COM3&COM4: RS-232
DIMM1: DDR-3 SODIMM
Socket

 Mini PCIe slot 2
AUDIO1: AUDIO
connector

SATA1: SATA device
connector #1

CN17: FPGA programming
header

PWR1: Power Input
Terminal Block Connector

SATA2: SATA device
connector #2.

 LED1: Status LED FUSE1: Fuse connector

 Revision: 1.0

 27

2.1.2 Locations (Bottom Side)

 CF1

 Revision: 1.0

 28

2.2 Connector and Jumper Setting Table

1. CN6: BLUETOOTH connector. 2. CN8: GPS connector.

PIN DEFINE

1 GND

2 USB_D+

3 USB_D-

4 +3.3V

5 LED

6 BT_ON

7 GND

8 +3.3V

PIN DEFINE

1 GND

2 USB_D+

3 USB_D-

4 +3.3V

5 LED

6 GPS_ON

7 GND

8 +3.3V

3. SATA_PWR1: SATA Power connector 4. SATA_PWR2: SATA Power connector

PIN DEFINE

1 +12V

2 GND

3 +3.3V

4 +5V

PIN DEFINE

1 +12V

2 GND

3 +3.3V

4 +5V

5. CN2: Pin Header for clear CMOS 6. CN13: SIM Card Slot

STATUS SETTING

1-2 Clear CMOS

SIM Card Slot for 3G Module.

7. BH1: CMOS battery holder 8. MINIPCIE1: Mini PCI-E connector. (for 3.5G

module)

CMOS battery holder

MINI PCI-E connector

 Revision: 1.0

 29

9. CN9: Internal USB2.0 connector (Reserve) 10. CN10: Internal USB2.0 connector

(Reserve)

PIN DEFINE

1 +5V

2 USB5-

3 USB5+

4 GND

5 GND

PIN DEFINE

1 +5V

2 USB6-

3 USB6+

4 GND

5 GND

11. MINIPCIE2: Mini PCI-E connector. 12. CN17: FPGA Programming HEADER.

MINI PCI-E connector.

FPGA programming header.

13. LED1: Power State 14. CN18: CANBUS connector

LED SIGNAL

G Status LED (2.5)

G HDD LED

Y Power LED

PIN DEFINE

1 CAN_H

2 CAN_L

15. GPIO1: GPIO connector (2.8) 16. CN5: RJ45 + USB X 2 connector

PIN DEFINE PIN DEFINE

1 GPO0 2 GPO1

3 GPO2 4 GPO3

5 GND 6 GND

7 GND 8 GND

9 GND 10 GND

11 GPI4 12 GPI5

13 GPI6 14 GPI7

15 N.C

RJ45 connector for Gigabit Ethernet port

#1.

Upper: Port #2.

Lower: Port #1.

 Revision: 1.0

 30

17. CN7: USB connector 18. CN28: PIC Programming connector.

Upper: Port #4.

Lower: Port #3.

PIC programming connector.

19. CN20: Setting Voltage level of Battery 20. VGA1: D-SUB-15 female connector for VGA

output

STATUS SETTING

1-2 +24V

2-3 +12V (Default).

D-SUB-15 female connector for

VGA output

21. SW1: DIP switch for power mode select

(2.3)

22. COM1&COM2 : D-SUB-9P Male connector

× 2

 (2.7)

Mode 1 2 3 4

0 ON ON ON ON

1 ON ON ON OFF

2 ON ON OFF ON

3 ON ON OFF OFF

4 ON OFF ON ON

5 ON OFF ON OFF

6 ON OFF OFF ON

7 ON OFF OFF OFF

PIN DEFINE PIN DEFINE

1
DCD

/DT-
2

SIN

/DT+

3
SOUT

/422R+
4

DTR

/422R-

5 GND 6 DSR

7 RTS 8 CTS

9 RI_12V

23. COM3&COM4: D-SUB-9P Male connector x

2

24. AUDIO1: AUDIO connector

PIN DEFINE PIN DEFINE

1 DCD 2 SIN

3 SOUT 4 DTR

5 GND 6 DSR

7 RTS 8 CTS

9 RI_12V

Color SIGNAL

Blue Remote Switch(2.4)

Green Line Out

Pink MIC IN

 Revision: 1.0

 31

25. PWR1: Power Input Terminal Block

Connector

26. FUSE1: Fuse connector

PIN DEFINE

1 12V / 24V

2 IGN

3 GND

PIN DEFINE

1,2 Fuse Out

3,4 Fuse In

27. CN23: RI SELECT for COM1/2

 CN24: RI SELECT for COM3/4

28. JP8,JP11: RS-232 / RS-422 / RS-485

Selection for COM1/2 (2.7)

STATUS SETTING

RI#

(Default)
1-2(COM1/COM3)

+12V 3-4(COM1/COM3)

RI#

(Default)
5-6(COM2/COM4)

+12V 7-8(COM2/COM4)

STATUS SETTING

RS-232

(Default)

1-3

2-4

RS-422
3-5

4-6

RS-485
3-5

4-6

29. CN25: RI SELECT for COM5/6 (Reserve) 30. COM5: RS232 signal connector for port #5

(Reserve)

STATUS SETTING

RI#

(Default)
1-2(COM5)

+12V 3-4(COM5)

RI#

(Default)
5-6(COM6)

+12V 7-8(COM6)

PIN DEFINE PIN DEFINE

1 DCD #5 2 DSR #5

3 RX #5 4 RTS #5

5 TX #5 6 CTS #5

7 DTR #5 8 RI #5

9 GND 10 N.C

31. JP5,JP6: RS-485 Termination 120 ohm

(Reserve)

32. JP7,JP10: RS-232 / RS-422 / RS-485

Selection for COM1/2 (2.7)

STATUS SETTING

Enable short

Disable
open

(Default)

STATUS SETTING

RS-232

(Default)
1-2

RS-422 3-4

RS-485 5-6

 Revision: 1.0

 32

33. JP9,JP12: RS-232 / RS-422 / RS-485

Selection for COM1/2 (2.7)

34. U8: SPI BIOS Socket

STATUS SETTING

RS-232

(Default)

1-3

2-4

RS-422
3-5

4-6

RS-485 N / A

SPI BIOS Socket

35. CN21: BIOS Programmable HEADER. 36. DIMM1: DDR-II SODIMM Socket.

PIN DEFINE PIN DEFINE

1 CS0 2 +3.3V

3 MISO 4 HOLD

5 WP 6 CLK

7 GND 8 MOSI

9 N.C 10 N.C

DDR-3 SODIMM Socket

37. SATA1: SATA device connector #1. 38. SATA2: SATA device connector #2.

SATA device connector #1

SATA device connector #2

39. CF1: Type-II compact flash card socket

+3.3V CF card only and UDMA

mode supported

 Revision: 1.0

 33

2.3 Power Subsystem

The FLEETPC-6 power subsystem converts the external DC input from vehicle to stable

power rails for internal mother board, peripherals, and external I/O. The power subsystem

can be configured by either an onboard switch SW1 or software to support various power

off delay time. There are 9 power modes available for your application.

2.3.1 Definition:

1. Ignition: Ignition is a voltage input to command the power subsystem start a power on

and off cycle. It is treated as ON when voltage is above 1.1 Volts and OFF as voltage

is below 1.1 Volts. The maximum voltage input shall below 32 volts.

2. Remote Switch: Remote switch input is a Open/Close latch switch. It is an optional

function when the power mode is set as Mode 2, 3 and 4. When you set the power

mode as 5, 6 or 7, it works with ignition to power on or off the system. It will be treated

as ON when the switch is CLOSED. It will be treated as OFF when the switch is

OPEN.

3. Soft Off Delay: This is the delay time after ignition or remote switch is OFF till power

subsystem sends a turn off command to the motherboard. If ignition or remote switch

is turned ON again during this period, the power subsystem will cancel the OFF

procedure and back to operating condition.

4. Hard Off Delay: This is the delay time after power subsystem detects the OS has been

shut down till the standby power is turned off.

2.3.2 Power Mode Description

 Mode0: ATX function. System will be turned on and off by the remote switch. It

operates as standard PC power button.

 Mode1: AT mode, Auto PWRBTN function. The power will be ON immediately

when external power present. The power will be OFF immediately when external

power is disconnected.

 Mode2: Smart mode.

A. Power on is controlled by ignition (remote switch does not make any action to

power on).

B. Power subsystem sends “ON” command to motherboard when ignition is on for

more than 2 seconds.

C. Power subsystem will ignore the status change of ignition after ON command is

sent to motherboard for 3 minutes. After this period, the Power Module will start to

check its status. This can avoid an improper “OFF” process before the OS is

 Revision: 1.0

 34

completely booted.

D. Power off is controlled by remote switch or ignition. Remote switch has higher

priority than ignition. (Remote switch is optional).

E. Power subsystem sends “off” pulse to motherboard 5 seconds after ignition is

turned off or remote switch is pressed. (Soft Off delay)

F. Power subsystem will ignore the status change of ignition and remote switch

during the “OFF” command is sent out and OS is completely shut down. This will

avoid an improper ON process before the motherboard is completely shot off.

G. Hard off delay: 1 minutes, During this period system can be turned on again if the

off procedure already finished and ignition or remote switch is ON again.

 Mode 3 & 4: Same as Mode 2 except for different Soft Off and Hard Off delay.

 Mode 5: Same as mode 2 except that the power on is controlled by remote

switch.

A. Power on is controlled by remote switch (ignition must be turned on 2

seconds before remote switch is pressed).

B. Power subsystem sends off command to motherboard 5 seconds after ignition or

remote switch is turned off. (Soft Off delay)

 Mode6, Mode7: Same as Mode 2 except for different Soft Off and Hard Off delay.

 Mode 15: Software programmable mode. You can set the Soft Off Delay time,

Hard Off Delay time and Power ON source by software Application Program

Interface. Please refer to Chapter 4 for details.

 Others modes are reserved for test only.

Mode description:

Mode	 Soft	OFF	

Delay	

Hard	OFF	

delay	

Power	ON	Control	 Power	OFF	Control	

0	(ATX)	 No No Remote Switch Remote Switch

1(AT)	 No No DC on DC off

2	 5 seconds 1 minute Ignition Ignition / Remote Switch

3	 1 minute 5 minutes Ignition Ignition / Remote Switch

 Revision: 1.0

 35

4	 30 minutes 2 hours Ignition Ignition / Remote Switch

5	 5 seconds 1 minute Remote Switch (2.4)

(Ignition must be on first)

Ignition / Remote Switch

6	 1 minute 5 minutes Remote Switch

(Ignition must be on first)

Ignition / Remote Switch

7	 30 minutes 2 hours Remote Switch

(Ignition must be on first)

Ignition / Remote Switch

15	(Software	

control)	

By user setting By user setting By user setting Ignition / Remote Switch

Low power protection:

Power input monitoring(before system boot on, during runtime, during soft off delay): The

Power smart function will constantly monitor the input voltage. If the input voltage is below

X Voltage (the standard might have 5% tolerance), the Smart Mode will not start the

power on procedure. When Power smart function has ran in operation and the battery

drops below Y Voltage (with 5% tolerance) more than 10 seconds the Power smart

function will shut down the motherboard following the standard shut down procedure. If the

input voltage recovers in 10 seconds over Y Voltage (with 5% tolerance) again, the Power

smart function will continue to run. (Figure 4)if this happens, ignition shall be off and on

again (Mode 2, 3, 4) or press the remote switch(Mode 5,6,7) if you want to turn on system

again.

 For 12V car battery For 24V car battery

X value 11.2 23

Y value 10.8 22.5

2.4 Remote Switch

We provide a remote switch cable with latch switch. Use the remote switch cable can let

user turn on and turn off system easier.

2.5 Status LED

The LED will flash a number of blink to state the status.

Mode 0 and 1:

LED will be constant ON when power output is ON. LED will be constant OFF when power

output is off.

Mode 2 to 7 and mode 15(Smart ATX mode):

 Revision: 1.0

 36

Each blink remains 500 milliseconds ON followed by a 500 ms OFF. Each Cycle will have a

5-second OFF in between.

flashing number Status

0 (constant ON) Power Output runs normally

1 Hard off mode

2 Standby mode (After power output is turned off

until 5VSB is turned off)

3 Power soft off delay. (After ignition is turned off or

remote switch is pressed until power output is

turned off.)

4 Battery voltage low

5 System on/off fail. When motherboard cannot

turn on or turn off after retry.

6 Mode 8 / 9 / 10 / 11 / 12 / 13 / 14, which means

no function in current version.

6-128 Reserved

2.6 Fuse selection

FLEETPC-6 has external fuse holder, user can swap fuse according to the application. We

provide 7.5A fuse for 12V car battery, so that user’s cable should be able to endure 7.5A at

least.

2.7 COM1 / 2 to choose RS-232 / RS-485 / RS-422 by Jump setting

 JP7,JP8,JP9 setting to COM1

 JP10,JP11,JP12 setting to COM2

 Revision: 1.0

 37

2.8 GPIO

GPO: Pin 1, Pin 2, Pin 3, Pin 4

Output voltage range: 5V~30V

Sink Current: Maximum 500mA each channel

Output Default set: Low

GPI: Pin 11, Pin 12, Pin 13, Pin 14

 Logic High: 3V~32V

 Logic Low: 0V~1.5V

 Revision: 1.0

 38

3 BIOS SETTING

This chapter describes the BIOS menu displays and explains how to perform common

tasks needed to get the system up and running. It also gives detailed explanation of the

elements found in each of the BIOS menus. The following topics are covered:

 Main Setup

 Advanced Chipset Setup

 PnP/PCI Setup

 Peripherals Setup

 PC Health Setup

 Boot Setup

 Exit Setup

Once you enter the Award BIOS™ CMOS Setup Utility, the Main Menu will appear on

the screen. Use the arrow keys to highlight the item and then use the <Pg Up> <Pg Dn>

keys to select the value you want in each item.

 Revision: 1.0

 39

3.1 Main Setup

The BIOS setup main menu includes some options. Use the [Up/Down] arrow key to

highlight

the option, and then press the [Enter] key to select the item and configure the functions.

Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields,

you can press the <F1> key, and the relevant information will be displayed.

Item Option Description

System Date
Format : MM/DD/YYYY

(month/day/year)

Set the system date. Note that the ‘Day’

automatically changes when you set the

date.

System Time
Format: HH:MM:SS

(hour:minute:second)
Set the system time.

IDE Channel 0

Master/Slave
N/A

The onboard SATA Ports support user

connecting up to 2 SATA HDD.

The first SATA Port is the “IDE Channel 0

Master” and the second is “IDE Channel 1

Master”. BIOS will auto-detect the HDD

type.

 Revision: 1.0

 40

Halt On

All Errors,

No Errors,

All but keyboard.

Select the situation in which you want the

BIOS to stop the POST process and notify

you.

 Revision: 1.0

 41

3.2 Advanced Chipset Setup

This section consists of configuration entries that allow you to

improve your system performance, or modify some system features according to your

preference. Some entries are required and reserved by the board’s design.

Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields,

you can press the <F1> key, and the relevant information will be displayed.

Option Choice Description

Hyper-Threading

Technology

Enabled

Disabled

Enable for Windows XP and Linux

Disable for other OS.

Quick Power On Self

Test

Enabled

Disabled

This category speeds up the Power On

Self Test (POST) after you have powered

on the computer. If it is set to Enabled, the

BIOS will shorten or skip some check

items during POST.

Full Screen Logo Show
Enabled

Disabled

Select Enabled to show the full screen

logo if you have an add-in BIOS.

On-Chip Frame

Buffer Size

1Mb

8Mb

This Item is for setting the Frame Buffer

(Share system memory as display

 Revision: 1.0

 42

memory).

DVMT mode
Enabled

Disabled

This item sets the mode for dynamic video

memory thechology

Total GFX Memory

128MB

256MB

MAX

This item sets the mode for GFX video

memory

 Revision: 1.0

 43

3.3 Power Setup

Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields,

you can press the <F1> key, and the relevant information will be displayed.

Item Option Description

ACPI Function Enabled ACPI System Support

ACPI Suspend

Type

S3

S1
ACPI S1/S3 Sleep State.

 Revision: 1.0

 44

3.4 PnP/PCI Setup

The option configures the PCI bus system. All PCI bus system on the system use INT#,

thus

all installed PCI cards must be set to this value.

Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields,

you can press the <F1> key, and the relevant information will be displayed.

Item Option Description

Reset Configuration

Data

Enabled

Disabled

Normally, you leave this field Disabled.

Select Enabled to reset Extended System

Configuration Data (ESCD) when you

exit Setup. If you have installed a new

add-on and the system reconfiguration has

caused such a serious conflict, then the

operating system cannot boot.

Resources

Controlled By

Auto(ESCD)

Manual

The Award Plug and Play BIOS has the

capacity to automatically configure all of the

boot and Plug and Play compatible devices.

However, this capability means absolutely

 Revision: 1.0

 45

nothing unless you are using a Plug and Play

operating system such as Windows 95. If

you set this field to “manual,” then you may

choose specific resources by going into each

of the submenus.

IRQ Resources N/A

When resources are controlled manually,

assign a type to each system interrupt,

depending on the type of the device that

uses the interrupt

 Revision: 1.0

 46

3.5 Peripherals Setup

This option controls the configuration of the board’s chipset. Control keys for this

screen are

the same as for the previous screen.

Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields,

you can press the <F1> key, and the relevant information will be displayed.

Option Choice Description

Onboard Serial Port 1

Onboard Serial Port 2

Onboard Serial Port 3

Onboard Serial Port 4

Onboard Serial Port 5

Serial Port 1: 3F8 / IRQ4

Serial Port 2: 2F8 / IRQ3

Serial Port 3: 3E8 / IRQ11

Serial Port 4: 2E8 / IRQ10

Serial Port 5: 4F8 / IRQ11

Select an address and the

corresponding interrupt for each

serial port.

USB Device Setting

Select your system contains a

Universal Serial Bus (USB)

controller and you have USB

peripherals.

On chip IDE DEVICE

The integrated peripheral controller

contains an IDE interface with

support for two IDE channels.

 Revision: 1.0

 47

3.6 PC Health Setup
This section shows the parameters in determining the PC Health Status. These

parameters

include temperatures, fan speeds, and voltages.

 Revision: 1.0

 48

3.7 Boot Setup
This option allows user to select sequence/priority of boot device(s) and Boot from

LAN.

Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields,

you can press the <F1> key, and the relevant information will be displayed.

Option Choice Description

First / Second / Third

Boot Device/Other Boot

Device

Hard Disk

CDROM

USB-FDD

USB-CDROM

LAN

Disabled

The BIOS attempts to load

the operating system from

the devices in the selected

sequence.

LAN Boot Select
Enabled

Disabled

These fields allow the

system to search for an

OS from LAN.

Hard Disk Boot Priority N/A
These fields set the Boot

Priority for each Hard Disk.

 Revision: 1.0

 49

3.8 Exit Setup

This option is used to exit the BIOS main menu and change password.

Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields,

you can press the <F1> key, and the relevant information will be displayed.

Option Choice Description

Save & Exit Setup

Press <Enter> on this item

to confirm:

Save to CMOS and EXIT

(Y/N)? Y

Press “Y” to store the

selections made in the menus

in CMOS – a special section of

the memory that stays on after

you turn your system off. The

next time you boot your

computer, the BIOS configures

your system according to the

setup selections stored in

CMOS. After saving the values,

the system will restart.

 Revision: 1.0

 50

Load Optimized

Defaults

When you press <Enter>

on this item, you will see a

confirmation dialog box

with a message like this:

Load Optimized Defaults

(Y/N)? N

Press ‘Y’ to load the default

values that are factory-set for

optimal-performance system

operations.

Exit Without Saving

Press <Enter> on this item

to confirm:

Quit without saving

(Y/N)? Y

This allows you to exit Setup

without storing any changes in

CMOS. The previous selections

remain in effect. This will exit

the Setup utility and restart your

computer.

Set Password

Press <Enter> on this item

to confirm:

ENTER PASSWORD:

When a password has been

enabled, you will be prompted

to enter your password every

time you try to enter Setup. This

prevents unauthorized persons

from changing any part of your

system configuration.

Type the password, up to eight

characters in length, and press

<Enter>. The password typed now

will clear any previous password

from the CMOS memory. You will

be asked to confirm the password.

Type the password again and

press <Enter>. You may also

press <Esc> to abort the selection

and not enter a password.

To disable a password, just press

<Enter> when you are prompted

to enter the password. A message

will confirm that the password will

be disabled. Once the password is

disabled, the system will boot and

you can enter Setup freely.

 Revision: 1.0

 51

4
SOFTWARE INSTALLATION AND

PROGRAMMING GUIDE

4.1 Introduction

4.1.1 CAN bus

Overview

The CAN bus APIs provide interfaces to CAN bus subsystem. By invoking these APIs,

programmers can implement applications which have the functions listed below:

1. Set the BAUD rate.

2. Send the CAN packages over the CAN bus.

3. Receive the CAN packages via the CAN bus hardware interface.

In this CAN bus API package, we provides:

1. On Linux platform:

Linux driver module of CAN bus subsystem and the driver load / unload scripts.

On Windows platform:

Device driver and install program of CAN bus subsystem.

2. API header file.

API libraries in static library format and shared library format.

3. CAN bus test utility and its source code.

Installation Procedure of CAN Bus Driver

On Linux platform:

1. Change to the ‘root’ user account.

2. In the ‘driver’ directory, execute the script ‘modld’.

3. Execute ‘lsmod’.

4. Make sure ‘6002’ is in the module list.

5. If the driver is no longer needed, execute the script ‘modul’ to unload the driver.

 Revision: 1.0

 52

On Windows platform:

1. In the driver directory, execute the ‘setup.exe’ program.

The CAN bus APIs

Before executing the applications which invoke the CAN bus APIs, users should make

sure that the Linux device driver or the Windows device driver of CAN bus has been

installed.

On Linux platform, after successfully installing the device driver, a character device

node named “/dev/can0” will be created automatically. The APIs open the device node

“/dev/can0” implicitly so acquiring a file descriptor of “/dev/can0” by users is not ncecssary.

In order not to degrade the performance of the CAN bus subsystem, the device node

“/dev/can0” is limited to be opened at most once at any moment, i.e., if application A

accesses CAN bus via the APIs, the application B which either tries to open ‘/dev/can0’ or

uses CAN bus API will result in failure.

On Windows platform, after successfully installing the device driver, there is a device

which shows ‘Device Driver for the FLEETPC-6 card’ in the ‘Device Manager’. The APIs on

Windows platform open this device implicitly. User can call the APIs directly without

opening the CAN Bus subsystem device.

CAN Message Format

// TPE DEFINE

typedef char i8;

typedef unsigned char u8;

typedef short i16;

typedef unsigned short u16;

typedef unsigned long u32;

typedef int i32;

typedef struct timeval {

 long tv_sec;

 long tv_usec;

} timeval;

 typedef struct {

 i32 flags;

 i32 cob;

 Revision: 1.0

 53

 u32 id;

 struct timeval timestamp;

 i16 length;

 u8 data[8];

 } canmsg_t;

To transmit a CAN package, the programmer has to fill in the fields in the variable of

type canmsg_t and pass this canmsg_t variable as an argument to invoke the APIs. The

fields in CAN message are described below:

flags:

 This field holds the information of message type. Programmers can set the message

type as:

1. Standard Data Frame:

canmsg_t msg; // Declare a variable ‘msg’ of type ‘canmsg_t’

msg.flags = 0; // Setting the flags field to 0 defines the ‘msg’ as an

// ordinary standard data frame.

2. Remote Transmission Request in Standard Data Frame format

canmsg_t msg;

msg.flags = 0; // Setting the flags field to 0 defines the ‘msg’ as an

// ordinary standard data frame.

 msg.flags = msg.flags | MSG_RTR; // Enable the RTR flag.

3. Extended Data Frame:

canmsg_t msg;

msg.flags = 0 | MSG_EXT; // Setting the EXT flag in the ‘flags’ field

// defines the ‘msg’ as an extended data frame.

4. Remote Transmission Request in Extended Data Frame format

canmsg_t msg;

msg.flags = 0 | MSG_EXT | MSG_RTR; // Enable the RTR flag.

cob:

 This field is reserved for holding a message communication object number.

id:

 CAN message ID.

timestamp:

 Revision: 1.0

 54

 When a CAN package is received, the CAN device driver will annotate a timestamp to

the timestamp field in the canmsg_t variable and return this canmsg_t variable to the caller.

length:

 The number of the data bytes which are sent or received in the ‘data’ field of CAN

message. This field is necessary while transmitting a Standard or Extended Data Frame.

Programmers have to explicitly set up this field. The length of data is 0~8.

For example:

 canmsg_t msg;

 msg.data[0] = 0xa1;

 msg.data[1] = 0xb2;

msg.data[2] = 0xc3;

msg.length = 3;

data:

 The byte array which holds the message data.

 Revision: 1.0

 55

4.1.2 GPIO and Watchdog

Overview

FLEETPC-6 provides both a GPIO interface and a Watchdog timer. Users can use the

GPIO and Watchdog APIs to configure and to access the GPIO interface and the

Watchdog timer. The GPIO has four input pins and four output pins. The Watchdog timer

can be set to 1~255 seconds. Setting the timer to zero disables the timer. The remaining

seconds of the timer to reboot can be read from the timer.

In this GPIO and Watchdog package, on Linux and Windows platform, we provide:

1. API source code.

2. GPIO and Watchdog test utility and the utility source code.

 Revision: 1.0

 56

4.1.3 Power Subsystem

Overview

When the FLEETPC-6 is at Power Mode 15, the Power Subsystem APIs can be used to get and set

the configuration of power subsystem. By invoking the Power Subsystem APIs, the users can:

1. Get the current status of ignition (ON or OFF).

2. Set the Power-On mode. This setting will be kept in the power subsystem and will take effect at next

system boot.

3. From the power subsystem, get the stored setting of Power-On mode.

4. Get or set the time of Hard Off delay in seconds or in minutes.

5. Get or set the time of Soft Off delay in seconds or in minutes

6. Get the battery voltage.

7. Get the version number of the firmware of the Power Subsystem.

8. Set the Hard Off delay and Soft Off delay to the default value.

The power subsystem connects to the main system via the COM6. The Linux’s default

supported COM interfaces are COM1~COM4. The Power Subsystem APIs implicitly

communicate with power subsystem through COM6. Users must take extra steps to

configure Linux kernel in order to support COM6. Please refer to Appendix A for more

information. Users don’t need extraordinary setup on Windows platform to support COM6.

In this Power Subsystem package, we provide:

1. The APIs to access power subsystem and the source code of the APIs.

2. The utility and source code to monitor and set up power modes, ignition status, and

power-off time.

3. On Linux platform, the Makefile to create API libraries and utility.

 Revision: 1.0

 57

4.2 File Descriptions

4.2.1 CAN Bus

On Linux platform:

1. AGC_LIB.h

The header file of the API and macro definitions.

2. errcode.h

The macro definitions of returned error code.

3. libAGC_LIB.a

The API library in static library format.

4. libAGC_LIB.so

The API library in shared library format.

5. main.c

The source code of the utility.

6. Makefile

On Windows platform:

1. FLEETPC-6.h

The header file of the APIs and macro definition. This header file is an aggregate

header which includes APIs declarations and macros for CAN Bus, GPIO, Watchdog,

and Power Subsystem.

2. FLEETPC-6.lib

The API library in static library format. This library is an aggregate library. It includes

APIs for CAN Bus, GPIO, Watchdog, and Power Subsystem.

3. FLEETPC-6.dll

The API library in dynamically linked library format. This library is an aggregate library.

It includes APIs for CAN Bus, GPIO, Watchdog, and Power Subsystem.

4. CAN_DEV_FUNC.h

The header file for the CAN bus test utility.

5. errcode.h

The macro definitions of returned error code.

6. CAN_DEV.cpp

The source code of the CAN bus test utility.

 Revision: 1.0

 58

4.2.2 GPIO and Watchdog

On Linux platform:

1. sio_acce.c

The source code of the Watchdog and GPIO APIs for accessing the SuperIO.

2. sio_acce.h

This file includes the declarations of the APIs and macro definitions.

3. main.c

The source code of the utility.

4. Makefile

On Windows platform:

1. FLEETPC-6.h

The header file of the APIs and macro definition. This header file is an aggregate

header which includes APIs declarations and macros for CAN Bus, GPIO, Watchdog,

and Power Subsystem.

2. FLEETPC-6.lib

The API library in static library format. This library is an aggregate library. It includes

APIs for CAN Bus, GPIO, Watchdog, and Power Subsystem.

3. FLEETPC-6.dll

The API library in dynamically linked library format. This library is an aggregate library.

It includes APIs for CAN Bus, GPIO, Watchdog, and Power Subsystem.

4. errno.h

 The macro definitions of returned error code.

5. GPIO_Watchdog.cpp

 The source code of the utility.

 Revision: 1.0

 59

4.2.3 Power Subsystem

On Linux platform:

1. pwr_acce.c

The source code of the APIs for accessing the power subsystem.

2. pwr_acce.h

This file includes the declarations of the APIs and macro definitions.

3. main.c

The source code of the utility.

4. Makefile

On Windows platform:

1. FLEETPC-6.h

The header file of the APIs and macro definition. This header file is an aggregate

header which includes APIs declarations and macros for CAN Bus, GPIO, Watchdog,

and Power Subsystem.

2. FLEETPC-6.lib

The API library in static library format. This library is an aggregate library. It includes

APIs for CAN Bus, GPIO, Watchdog, and Power Subsystem.

3. FLEETPC-6.dll

The API library in dynamically linked library format. This library is an aggregate library. It includes APIs

for CAN Bus, GPIO, Watchdog, and Power Subsystem.

4. PWRPIC.h

The main haeder file for the GUI.

5. PWRPIC.cpp

The definitions of the class declared in ‘PWRPIC.h’.

6. PWRPICDlg.h

The main header file for the class of performing the Power Subsystem access.

7. PWRPICDlg.cpp

The definitions of the classs declared in ‘PWRPICDlg.h’.

8. SerialPort.h

The header file for functions which access the COM port.

9. SerialPort.cpp

The definitions of the functions declared in ‘SerialPort.h’.

 Revision: 1.0

 60

4.3 API List and Descriptions

4.3.1 CAN Bus

1. Syntax:

unsigned int sendCanMessages(canmsg_t *buffer, u8 count)

Description: This function sends out CAN packages over the CAN bus.

Parameters: If there is more than one CAN package to send, these CAN packages are

stored in a ‘canmsg_t’ array. This function sends out packages in a sequential fashion.

The memory address of the first CAN package to send is pointed at by the parameter

‘buffer’. The number of CAN packages to send is indicated by the parameter ‘count’. If

the resource of sending out the CAN packages is temporarily unavailable, the process

which invokes this function will be blocked (Block I/O) until the resource is available

again.

Return Value: If this function sends out the packages successfully, it returns

ERROR_API_SUCC. If this function fails to open the CAN device node, it returns

ERROR_API_CAN_OPEN_FAIL. If this function has any problem with sending out the

CAN packages, it returns ERROR_API_CANSENDMESSAGES.

Here is an example:

If the CAN packages in the array ‘canAry[]’ have been initialized. The code listed below

will send out the CAN packages in the ‘canAry[]’ over the CAN bus.

 unsigned int result = 0;

canmsg_t canAry[30];

 /* …

 Initialize the CAN packages in the canAry[30]

 */

 result = sendCanMessages(canAry, 30);

 if(result == ERROR_API_CANSENDMESSAGES ||

 result == ERROR_API_CAN_OPEN_FAIL)

 fprintf(stderr, “Send CAN package error!\n”);

 Revision: 1.0

 61

2. Syntax:

unsigned int getCanMessages(canmsg_t *buffer, u8 count)

Description: This function receives CAN packages from the CAN bus subsystem.

Parameters: This function stores received CAN packages sequentially at an array of

type ‘canmsg_t’. The number of packages to receive is indicated by the parameter

‘count’. Before finishing receiving ‘count’ packages, the process which invokes this

function will be temporarily blocked (Block I/O) if there is no incoming CAN package.

Return Value: If this function receives the packages successfully, it returns

ERROR_API_SUCC. If this function fails to open the CAN device node, it returns

ERROR_API_CAN_OPEN_FAIL. If this function has any problem with receiving the

CAN packages, it returns ERROR_API_CANGETMESSAGES.

Here is an example:

If the array ‘canAry[]’ of type ‘canmsg_t’ has been declared and allocated. The code

listed below will receive 30 CAN packages from the CAN bus subsystem and stores the

packages in the ‘canAry[]’.

 unsigned int result = 0;

canmsg_t canAry[30];

 result = getCanMessages(canAry, 30);

 if(result == ERROR_API_CANGETMESSAGES ||

 result == ERROR_API_CAN_OPEN_FAIL)

 fprintf(stderr, “Send CAN package error!\n”);

3. Syntax:

unsigned int configCan(i32 baud)

Description: This function sets up the speed (Baud rate) of sending and receiving

CAN packages.

Parameters: The parameter ‘baud’ could be: (the unit is Kbps)

 10 , 20 , 50 , 100 , 125 , 250 , 500 , 800 , 1000

 Revision: 1.0

 62

The default speed is 125 Kbps.

Return Value: This function returns ERROR_API_SUCC if it set the Baud rate

successfully. If this function fails to open the CAN device node, it returns

ERROR_API_CAN_OPEN_FAIL. If the inputted Baud rate is not any one of the Baud

rate listed above, it will return ERRMSG(ERROR_API_CANCONFIG,

ERROR_GEN_INPUT_DATA). If it has any other problem with setting the Baud rate, it

returns ERROR_GEN_DEVICE_FAIL.

 Revision: 1.0

 63

4.3.2 GPIO and Watchdog

GPIO

1. Syntax:

 i32 getInChLevel(i32 channel, u8 *val)

Description: Get the value of GPIO Input and put the value at *val.

Parameters:

I. The parameter ‘channel’ indicates the GPIO Input pins to show. Users can use the

macros GPI0, GPI1, GPI2, GPI3 to indicate the GPIO Input channel. For example:

 getInChLevel(GPI2, &val); // Indicate the GPIO Input channel 2

 getInChLevel(GPI0 | GPI3, &val); // Indicate the GPIO Input

// channel 0 and channel 3

II. The parameter ‘val’ is an unsigned character pointer. The function puts the values

of the indicated GPIO channels at the memory pointed by ‘val’. The bit 0 of *val

shows the value of GPIO Input channel 0. The bit 1 of *val shows the value of

GPIO Input channel 1. Other bits show the corresponding GPIO Input channels.

Because there are only four channels, bit 4 ~ bit 7 of *val are always zero.

Here is an example:

If GPIO Input channel 1 and channel 3 are both 1.

unsigned char ch;

getInChLevel(GPI1|GPI3, &ch);

The returned value of variable ‘ch’ is 0xa.

Return Value: If the function gets the values successfully, it returns 0. If any error, it

returns –1.

 Revision: 1.0

 64

2. Syntax:

i32 setOutChLevel(i32 channel, u8 val)

Description: Set the value of GPIO Output according to the variable ‘val’.

Parameters:

I. The parameter ‘channel’ indicates the GPIO Output pins to set. Users can use the

macros GPO0, GPO1, GPO2, GPO3 to indicate the GPIO Output channels.

II. The parameter ‘val’ indicate the value to be set to GPIO Output channel. The

acceptable values is limited to 0 and 1.

 For example:

 /* Setting the GPIO Output channel 2 to 1 */

 setOutChLevel(GPO2, 1);

 /* Setting the GPIO Output channel 0 and channel 3 to 0 */

 getInChLevel(GPO0 | GPO3, 0);

Return Value: If the function sets the values successfully, it returns 0. If any error, it

returns –1.

3. Syntax:

i32 getOutchLevel(i32 channel, u8 *val)

Description: Get the value of GPIO Output and put the value at *val.

Parameters:

I. The parameter ‘channel’ indicates the GPIO Output pins to show. Users can use

the macros GPO0, GPO1, GPO2, GPO3 to indicate the GPIO Output channel.

For example:

 getOutChLevel(GPO2, &val); // Indicate the GPIO Output channel 2

 /* Indicate the GPIO Output channel 0 and channel 3. */

 getOutChLevel(GPO0 | GPO3, &val);

II. The parameter ‘val’ is an unsigned character pointer. The function puts the values

of the indicated GPIO channels at the memory pointed by ‘val’. The bit 0 of *val

shows the value of GPIO Output channel 0. The bit 1 of *val shows the value of

 Revision: 1.0

 65

GPIO Output channel 1. Other bits show the corresponding GPIO Output

channels. Because there are only four channels, bit 4 ~ bit 7 of *val are always

zero.

Here is an example:

If GPIO Output channel 0 and channel 2 are both 1.

unsigned char ch;

getOutChLevel(GPO0|GPO2, &ch);

The returned value of variable ‘ch’ is 0x5.

Return Value: If the function gets the values successfully, it returns 0. If any error, it

returns –1.

Watchdog

1. Syntax:

u8 getWtdTimer(void)

Description: This function read the value of the watchdog time counter and return it to

the caller.

Parameters: None.

Return Value: This function return the value of the time counter and return it to the

caller as an unsigned integer.

2. Syntax:

void setWtdTimer(u8 val)

Description: This function sets the watchdog timer register to the value ‘val’ and starts

to count down. The value could be 0 ~ 255. The unit is second. Setting the timer

register to 0 disables the watchdog function and stops the countdown.

Parameters: The parameter ‘val’ is the value to set to watchdog timer register. The

range is 0 ~ 255.

Return Value: None.

 Revision: 1.0

 66

4.3.3 Power Subsystem

1. Syntax:

i32 getIgnStatus(u8 *ignStatus)

Description: Get the current ignition status. The ignition has two statuses: ON or OFF.

Parameters: This function puts the ignition status at the memory pointed by the

unsigned character pointer ‘ignStatus’. If the returned status is 0xa5, the ignition is ON.

If the returned status is 0x5a, the ignition is OFF. There are macros of Ignition ON and

Ignition OFF in pwr_acce.h.

Return Value: If the function gets the ignition status and put it at the memory pointed by

the argument successfully, this function will return 0. If any error, the function returns –1.

2. Syntax:

 i32 setSoftOffDelayS(u32 setTime)

Description: The Soft Off Delay is the interval between that the system receives a

power off signal and that the system generates a power off signal. This function sets up

the interval in seconds.

Parameters: The parameter is of the type of unsigned long. The value of the parameter

ranges from 0~255. The unit of the value of the parameter is seconds.

Return Value: If the function sets the delay time successfully, it will return 0. If any error,

the function returns –1.

3. Syntax:

 i32 setSoftOffDelayM(u32 setTime)

Description: The Soft Off Delay is the interval between that the system receives a

power off signal and that the system generates a power off signal. This function sets up

the interval in minutes.

Parameters: The parameter is of the type of unsigned long. The value of the parameter

ranges from 0~255. The unit of the value of the parameter is minutes.

Return Value: If the function sets the delay time successfully, it will return 0. If any error,

the function returns –1.

 Revision: 1.0

 67

4. Syntax:

i32 setHardOffDelayS(u32 setTime)

Description: The Hard Off Delay is the interval between that the system is off and that

the power 5VSB is off. This functions set up the interval in seconds.

Parameters: The parameter is of the type of unsigned long. The value of the parameter

ranges from 0~255. The unit of the value of the parameter is seconds.

.

Return Value: If the function sets the delay time successfully, it will return 0. If any error,

the function returns –1.

5. Syntax:

i32 setHardOffDelayM(u32 setTime)

Description: The Hard Off Delay is the interval between that the system is off and that

the power 5VSB is off. This functions set up the interval in minutes.

Parameters: The parameter is of the type of unsigned long. The value of the parameter

ranges from 0~255. The unit of the value of the parameter is minutes.

.

Return Value: If the function sets the delay time successfully, it will return 0. If any error,

the function returns –1.

6. Syntax:

i32 setPowerOnMode(u8 powerOnMode)

Description: The function sets up the source of the boot-up signal of the system. There

are two choices: boot from the Ignition or boot from the Remote Switch.

 Parameters:

PowerOnMode = 0xa5, boot up by the Ignition.

PowerOnMode = 0x5a, boot up by the Remote Switch.

 There are macros of Ignition mode and Remote Switch mode in pwr_acce.h (Linux) and

FLEETPC-6.h(Windows).

Return Value: If the function sets power-on mode successfully, it will return 0. If any

error, the function returns –1.

 Revision: 1.0

 68

7. Syntax:

i32 getSoftOffDelay(u32 *Time)

Description: The Soft Off Delay is the interval between that the system receives a

power off signal and that the system generates a power off signal. This function gets the

interval.

Parameters: The parameter is a pointer which points to an unsigned long variable. The

returned value is stored at this variable. The unit of the returned value is in seconds.

Return Value: If the delay time is returned successfully, the function returns 0. If any

error, it returns –1.

8. Syntax:

i32 getHardOffDelay(u32 *Time)

Description: The Hard Off Delay is the interval between that the system is off and that

the power 5VSB is off. This function gets the interval.

Parameters: The parameter is a pointer which points to an unsigned long variable. The

returned value is stored at this variable. The unit of the returned value is in seconds.

Return Value: If the delay time is returned successfully, the function returns 0. If any

error, it returns –1.

9. Syntax:

i32 getPowerOnMode(u8 *powerOnMode)

Description: The function gets the setting of power-on mode. There are two modes:

boot from the Ignition or boot from the Remote Switch.

Parameters: The parameter is a pointer which points to an unsigned character. The

returned code is stored at this memory. There are two power-on modes:

PowerOnMode = 0xa5, boot up by the Ignition.

PowerOnMode = 0x5a, boot up by the Remote Switch.

Return Value: If the power-on mode is returned successfully, the function returns 0. If

any error, it returns –1

 Revision: 1.0

 69

10. Syntax:

i32 getBattVolt(float *volt)

Description: The function gets the voltage reading of the battery.

Parameters: The parameter ‘volt’ is a pointer which points to an variable of type ‘float’.

The unit of the returned value is voltage.

Return Value: If the reading of voltage is returned successfully, the function returns 0. If

any error, it returns –1

11. Syntax:

i32 getPicFwVer(struct PicInfo *ver)

Description: The function gets version information of Power Subsystem firmware.

Parameters: The parameter is a pointer which points to a ‘PicInfo’ structure, which

consists of 9 unsigned characters. Here is the definition of structure ‘PicInfo’:

 type struct {

 u8 type[3]; // The type of the power subsystem

u8 mode[4]; // The mode at which the power subsystem is

operating.

 u8 majorVersion; // Major version number of the firmware

 u8 minorVersion; // Minor version number of the firmware

 } PicInfo;

PicInfo picInfo;

getPicFwVer(&picInfo);

printf(“%c.%c\n”, picInfo.majorVersion, picInfo.minorVersion);

Return Value: If the version information is returned successfully, the function returns 0.

If any error, it returns –1.

 Revision: 1.0

 70

12. Syntax:

i32 getPicMode(u8 *mode)

Description: The function gets the mode number at which the Power Subsystem is

operating..

Parameters: The parameter is a pointer which points to a variable of type ‘unsigned

char’. The returned mode number is put at the memory which is pointed by parameter

‘mode’.

Return Value: If the mode information is returned successfully, the function returns 0. If

any error, it returns –1

13. Syntax:

i32 setPicDefault(void)

Description: The function restores the SoftOffDelay and HardOffDelay to the default

value.

Parameters: None.

Return Value: If this function works successfully, the function will return 0. If any error, it

will return –1.

 Revision: 1.0

 71

4.4 Appendix

Users have to modify the boot loader configuration to support COM6. Take the grub

configuration file as an example. Add ‘8250.nr_uarts=XX noirqdebug’ at the setting of

kernel. Here, XX represents the number of COM ports the system will support. Because the

power subsystem connects to main system via COM6, the XX must be greater or equal to

6.

1. Modify the grub.conf.

[root@linux ~]# vi /boot/grub/grub.conf

default=0

timeout=5

splashimage=(hd0,0)/grub/splash.xpm.gz

hiddenmenu

title Fedora Core (2.6.27.5.117.FC10)

root (hd0,0)

kernel /vmlinuz-2.6.27.5.117.FC10 ro root=/dev/hda2 rhgb quiet

8250.nr_uarts=6 noirqdebug

initrd /initrd-2.6.27.5.117.FC10.img

2. List the status of the COM ports in the system.

setserial -g /dev/ttyS*

/dev/ttyS0, UART: 16550A, Port: 0x03f8, IRQ: 4

/dev/ttyS1, UART: 16550A, Port: 0x02f8, IRQ: 3

/dev/ttyS2, UART: 16550A, Port: 0x03e8, IRQ: 11

/dev/ttyS3, UART: 16550A, Port: 0x02e8, IRQ: 10

/dev/ttyS4, UART: 16550A, Port: 0x04f8, IRQ: 11

/dev/ttyS5, UART: 16550A, Port: 0x04e8, IRQ: 10

The node ‘/dev/ttyS5’ corresponds to COM6. The IO port is 0x4e8, IRQ 10.

 Revision: 1.0

 72

5
OPTIONAL MODULE

SPECIFICATIONS

5.1 GPS
WIESON ZYM-5020 GPS Module

G5020-1 is a high performance, low power consumption、small size、very easy integrated

GPS engine board, designed for a broad spectrum of OEM system applications. The GPS

engine board will track up to 16 satellites at a time, provide fast time-to-first-fix and

one-second navigation updates.

Features

(1) Build on high performance Ublox5 chipset, -160dBm tracking sensitivity.

(2) Average Cold Start time and under 30 seconds. 16 channels “All-in-View” tracking,

providing accurate satellite position data.

(3) ±0.5ppm temperature compensated crystal oscillators (TCXO) to offer higher stability.

Please refer to GPS user’s manual for details.

5.2 Bluetooth
Qcom QBTM400-01 Bluetooth Module

Features

- CSR BlueCore4-ROM (A07) Single Chip Bluetooth System

- Bluetooth 2.1 + EDR support

- Class 2 Bluetooth operation with full 7 slave Piconet support

- Full Speed USB interface compliant with USB V1.1 and compatible with

USB V2.0

- Single onboard Antenna connector support

- Simple Pairing, Version 2.1 + EDR to advance its short range wireless

technology and make it easier for consumers to connect Bluetooth devices.

Specification Compliance

- Bluetooth Specification V1.2, V2.0, V2.1 and V.2.1+EDR compliant

- USB Specification V1.1

- compatible with USB V2.0 Full Speed (12Mbits/s)

 Revision: 1.0

 73

5.3 WiFi
Advantech WiFi-105E Module

Features

IEEE 802.11 b/g/n standards

PCI Express full-size Mini Card interface

Up to 300 Mbps data rate

WEP/WPA/WPA2 security

1T x 2R MIMO technology

Low power consumption for embedded system

5.4 Sierra 3.5G
Sierra MC8790 3.5G Module

Features

Support GSM/GPRS/EDGE/UMTS/HSDPA

5.5 Huawei 3.5G
Huawei EM770W 3.5G Module

Features

Support GSM/GPRS/EDGE/UMTS/HSDPA

